A Moving Mesh Finite Element Algorithm for the Adaptive Solution of Time-Dependent Partial Differential Equations with Moving Boundaries
نویسندگان
چکیده
A moving mesh finite element algorithm is proposed for the adaptive solution of nonlinear diffusion equations with moving boundaries in one and two dimensions. The moving mesh equations are based upon conserving a local proportion, within each patch of finite elements, of the total “mass” that is present in the projected initial data. The accuracy of the algorithm is carefully assessed through quantitative comparison with known similarity solutions, and its robustness is tested on more general problems. Applications are shown to a variety of problems involving time-dependent partial differential equations with moving boundaries. Problems which conserve mass, such as the porous medium equation and a fourth order nonlinear diffusion problem, can be treated by a simplified form of the method, while problems which do not conserve mass require the full theory.
منابع مشابه
Moving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod
In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...
متن کاملScale-Invariant Moving Finite Elements for Nonlinear Partial Differential Equations in Two Dimensions
A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant...
متن کاملAn Adaptive Moving Mesh Method with Static Rezoning for Partial Differential Equations
Adaptive mesh methods are valuable tools in improving the accuracy and efficiency of the numerical solution of evolutionary systems of partial differential equations. If the mesh moves to track fronts and large gradients in the solution, then larger time steps can be taken than if it were to remain stationary. We derive explicit differential equations for moving the mesh so that the time variat...
متن کاملSpectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory
In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...
متن کاملVelocity-based moving mesh methods for nonlinear partial differential equations
This article describes a number of velocity-based moving mesh numerical methods for multidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conser...
متن کامل